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A scale-dependent dynamic subgrid model based on Lagrangian time averaging is proposed and
tested in large eddy simulationssLESd of high-Reynolds number boundary layer flows over
homogeneous and heterogeneous rough surfaces. The model is based on the Lagrangian dynamic
Smagorinsky model in which required averages are accumulated in time, following fluid trajectories
of the resolved velocity field. The model allows for scale dependence of the coefficient by including
a second test-filtering operation to determine how the coefficient changes as a function of scale. The
model also uses the empirical observation that when scale dependence occursssuch as when the
filter scale approaches the limits of the inertial ranged, the classic dynamic model yields the
coefficient value appropriate for the test-filter scale. Validation tests in LES of high Reynolds
number, rough wall, boundary layer flow are performed at various resolutions. Results are compared
with other eddy-viscosity subgrid-scale models. Unlike the Smagorinsky–Lilly model with
wall-damping swhich is overdissipativedor the scale-invariant dynamic modelswhich is
underdissipatived, the scale-dependent Lagrangian dynamic model is shown to have good
dissipation characteristics. The model is also tested against detailed atmospheric boundary layer data
that include measurements of the response of the flow to abrupt transitions in wall roughness. For
such flows over variable surfaces, the plane-averaged version of the dynamic model is not
appropriate and the Lagrangian averaging is desirable. The simulated wall stress overshoot and
relaxation after a jump in surface roughness and the velocity profiles at several downstream
distances from the jump are compared to the experimental data. Results show that the dynamic
Smagorinsky coefficient close to the wall is very sensitive to the underlying local surface roughness,
thus justifying the use of the Lagrangian formulation. In addition, the Lagrangian formulation
reproduces experimental data more accurately than the planar-averaged formulation in simulations
over heterogeneous rough walls. ©2005 American Institute of Physics. fDOI: 10.1063/1.1839152g
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I. INTRODUCTION

Large-eddy simulationsLESd has become an importa
tool for the study of high-Reynolds number environmenta1–8

and engineering9–11 turbulent flows. LES resolves the flow
scales larger than a certain sizeD, while the smaller scale
are parametrized. The classic, most often used parame
tion sthe Smagorinsky model12d is based on the concepts
eddy-viscosity and mixing length, in which the subgrid-sc
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sSGSdstress tensorsits traceless partdis modeled accordin
to

ti j
SMAG = − 2nTS̃ij = − 2scs,DDd2uS̃uS̃ij . s1d

Above, nT is the eddy viscosity,S̃ij =0.5s] jũi +]iũjd is the
resolved strain rate tensorswhereũi is the resolved velocit

fieldd, and the strain-rate magnitude is given byuS̃u
=Î2S̃ij S̃i j . The only undetermined parameter in the ab
expression is the Smagorinsky coefficientcs,D. Even though
many SGS models that do not rely on the viscous ana
concept have been developed, this paper will focus on e
viscosity models since they continue to be the most wi
used in practice, either individually or in conjunction w
the similarity type models in the so-called mix

13–18
models.
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In 1991, an important development took place in L
with the introduction of the dynamic model and the Germ
identity.19,20 By relating stresses at different scales, the G
mano identity allows unknown model coefficients, such
cs,D, to be determined from the smallest resolved scale
tween the grid-scaleD and a test-filter scaleaD sa.1, usu-
ally a=2d. A major assumption of the original dynamic a
proach is scale-similarity, i.e., that model coefficients are
same at different scales:cs,D=cs,aD ssee the discussion b
Meneveau and Katz21d. Scale invariance is a reasonable
sumption if D pertains to an idealized inertial range of t
bulence, but it is not expected to hold ifD falls near a tran
sition scale that separates different physical proce
occurring in distinct ranges of scales. One example wheD
falls near a transition scale occurs when the grid scaD
approaches the integral scale, a limit that is of releva
when LES approaches the Reynolds-averaged Navier-S
formulation in certain parts of the flow. Of specific interes
applications to be examined in this paper, such a situ
occurs in LES of high-Reynolds number wall-bounded fl
where the integral scale is on the order of the distance t
wall. At the high-Reynolds numbers that occur in appl
tions to atmospheric or oceanic boundary layers, LES ca
resolve the viscous sublayersdue to computational pow
limitationsd. In such applications, the first few cells near
surface have a grid scale on the order of the local inte
scale and inaccurate results are obtained from the tradi
scale-invariant dynamic modelssee SGS comparison sect
in this paper and Refs. 22 and 23 for a discussion and
tration of this effectd. Moreover, in this situation the subg
stresses carry a significant fraction of the total mean mo
tum fluxes, and hence the LES results are particularly s
tive to the SGS model.

To address this shortcoming of the traditional dyna
model, Porté-Agelet al.22 proposed a scale-dependent v
sion of the dynamic model in which a second test filter
termines how the coefficient changes across scales, thu
viding more accurate estimation of the coefficient at the
scale. In the tests of atmospheric boundary layer flow
homogeneous surfaces performed in Porté-Agelet al.,22 the
scale-dependent dynamic model was implemented using
nar averaging, i.e., the averages required to enforce the
mano identity were evaluated over horizontal planes pa
to the ground. This was appropriate for the simple ge
etries envisioned in those tests, where horizontal planes
respond to directions of statistical homogeneity of the tu
lence. An important question is how to treat comp
geometry flows that do not possess directions of statis
homogeneity and thus do not present obvious spatia
mains over which to evaluate averages during LES.

For the dynamic model, the issue of averaging the te
in the Germano identity has been the subject of conside
research19,24,25salso see discussion in Pope26d. Especially in
the context of eddy-viscosity closures, averaging is cruci
reduce the large amount of noise that is present whe
averaging is performedsrecall that in LES one must evalua
the divergence of the modeled SGS stress tensor; ther
unphysical fluctuations in the coefficient can lead to sig

cant errors, not to mention numerical instability if the coef-
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ficient becomes negatived. To reduce the noise for app
tions in complex geometry flow, time averaging w
proposed by Meneveauet al.24 In order to comply with Gal
ilean invariance, time must be considered by following fl
parcels of the flow. Thus the Lagrangian dynamic model
proposed and tested in a number of flows.15,16,24,27–30In these
applications, viscous sublayers were resolved and henc
assumption of scale invariance was justified; the s
invariant Lagrangian approach allowed determination o
coefficient in these complex-geometry situations. Howe
for applications where the viscous sublayer cannot be
solved, such as high-Reynolds numberse.g., atmospheric
boundary layers over complex terrain, that model is no
plicable due to the lack of scale invariance near the gro

Thus, an important issue remains, namely, the form
tion of a scale-dependent Lagrangian dynamic model.
paper is devoted to this task. In Sec. II we review the b
elements of the scale-invariant dynamic model, the s
dependent dynamic formulation with planar averaging
Porté-Agelet al.,22 and the Lagrangian scale-invariant
namic model of Meneveauet al.24 Section III of the pape
presents the proposed Lagrangian scale-dependent dy
model, enabling applications of the dynamic mode
complex-geometry flows without assuming scale-invaria
or spatial homogeneity. Section IV describes the nume
code used in this work to simulate high-Reynolds num
boundary-layer flows and presents test results in horizon
homogeneous flows for which the performances of the
ous SGS models described in Secs. II and III can be
pared in detail. Section V describes applications of the
grangian scale-dependent dynamic model to high-Rey
number atmospheric flow over rough surfaces with ab
changes in wall roughnesssi.e., horizontally nonhomog
neousd, and compares the results to existing field mea
ments data and to the results obtained with a planar-ave
version of the scale-dependent model. Conclusions are
sented in Sec. VI.

II. REVIEW OF THE DYNAMIC, SCALE-DEPENDENT,
AND LAGRANGIAN DYNAMIC SGS MODELS

The original nondynamic Smagorinsky–Lilly modelsde-
noted SMAG belowdhas already been introduced in Sec
For isotropic homogeneous turbulence, withD falling in the
inertial range, the analysis of Lilly31 yieldscs,0.16 sfor the
spectral cutoff filterd, a value that provides good result
LES of idealized isotropic turbulence. It remains to point
that for applications to high-Reynolds number boundary
ers in which the viscous sublayer is not resolvedssee Pope26d
a wall-damping function needs to be included in the spe
cation of the coefficient, otherwise turbulence generatio
excessively damped and insufficient kinetic energy occu
the resolved scales of the simulation. A classic wall-dam
function was proposed by Mason and Thompson32 where the
SGS mixing length,l=cs,DD is decreased close to the s
face to merge smoothly with thel,z behavior expecte

there. The resulting damping function is

icense or copyright, see http://pof.aip.org/pof/copyright.jsp
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1

ln =
1

l0
n +

1

fksz+ zodgn , s2d

wherek is the von-Karman constants<0.4d andl0=cs,0D is
the mixing length away from the wallsin a region of nearl
homogeneous isotropic turbulenced. In simulations using th
Lilly–Smagorinsky model in this study,cs,0 is taken as 0.1
and a value of 2 is assigned ton, which fixes the dampin
function shapesalternative values ofn=1 andcs,0=0.1 were
also tested in other studies, see Porté-Agelet al.22 for more
detailsd.

Despite the use of this wall-damping functionswith
varying values ofcs,0 andnd, the Smagorinsky–Lilly mode
remains overdissipative22,32 and would require further d
tailed calibrations of the coefficient to yield more accu
results. To avoid the need for such case-by-case calibr
of parameters, the dynamic model of Germanoet al.19 was
proposed.

A. The dynamic model

The dynamic model19 consists of using the smallest
solved scales to measure the model coefficient during
simulation. The model is based on a relation between
stresses at different scalessthe grid scaleD and a test filte
scaleaD, wherea is usually taken as 2dexpressed by th
following identity:

Lij = Tij − s̄i j = ũiũj − uD iuD j . s3d

Here si j is the SGS stress tensor at scaleD, Tij is the SGS
stress tensor at the test-filter scaleaD and Lij is the SGS
stress tensor defined from scales intermediate betweenD and
aD. Lij is the resolved stress tensor and can be comp
exactly from the resolved velocity field using Eq.s3d.
Throughout the paper, a tildes̃ d denotes the filtering oper
tion at the grid-scaleD and a bars̄ d denotes test-filtering
the test-filter scaleaD, typically a=2. Later on, a caretsˆd
denotes the second test-filtering at a second test-filter
a2D. Ensemble averaging will be denoted by bracketskl.
Brackets followed by dimensions subscripts will denote
eraging in all the indicated dimensions; for example,kulx,y is
the velocity averaged over thex andy directions.

Using the Smagorinsky model to express the devia
parts of SGS stresses at the scalesD and aD and assumin
that the coefficientcs,D does not fluctuate strongly in space
justify extracting it from the test-filtering operation24,25 re-
sults in the following expressions:

t̄i j = s̄i j
D = − 2cs,D

2 D2uS̃uS̃ij , Tij
D = − 2cs,aD

2 saDd2uSD uSD i j . s4d

The superscriptD denotes the deviatoricstrace-freedpart of
the tensor. Replacing in Eq.s3d yields an error in that identit
induced by the use of the Smagorinsky model. This err

eij = Lij
D − sTij

D − t̄i jd = Lij
D − cs,D

2 Mij , s5d

whereMij is given by

Mij = 2D2fuS̃uS̃ij − a2buSD uSD i jg; s6d

b=cs,aD
2 /cs,D

2 is a parameter that accounts for possible s

dependence ofcs,D.
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Usually, the use of this model makes the assumptio
scale invariance, i.e.,cs,D=cs,aD or b=1. To obtain an opt
mal value ofcs,D, the square erroreijeij , is minimized con
tracted over all tensor terms.33 Nevertheless, the local det
mination ofcs,D at every grid point yields a highly variab
coefficient that is numerically unstable, mainly due to a h
frequency of negative values. Some averaging is h
needed to stabilize the coefficient. Ghosal25 showed that av
eraging over homogeneous spatial directions yields a sy
that is consistent with the extraction ofcs,D from the filter
operation and that is equivalent to Lilly’s expression a
aged over homogeneous directions. Interestingly, Pope
showed that if the coefficient is optimized to minimizesin a
least-square sensedthe dependence of relevant turbule
statistics on the grid scaleD, the expression obtained is ag
exactly Lilly’s expression.34

In wall-bounded flows, horizontal planes are usually
lected as the homogeneous directions for averaging. I
absence of homogeneous directions, the Lagran
approach24 can be used to average the coefficient over
along fluid pathlinessthe approach is further explained
Sec. II C belowd. However, for any type of averaging,
noted by bracketskl, the Smagorinsky coefficient determin
by a least-square error minimization ofkeijeijl can be written
as

cs,D
2 =

kLijMijl
kMijMijl

. s7d

Note that the contraction ofLij with Mij eliminates the nee
to distinguish betweenLij and Lij

D, sinceMij is a deviatoric
stracelessdtensor in incompressible flows. With planar av
aging, this scale-invariant version of dynamic model
henceforth be denoted PASI.

B. The planar-averaged scale-dependent dynamic
model

To account for scale effects in the dynamic model,
approaches exist. If prior knowledge of the variation ofcs,D

with scale is available, the parameterb can be prescribeda
priori. Such a “semi-dynamic” approach with an impo
parameterb was tested by Meneveau and Lund35 to capture
scale dependence in the transition from LES to direct
merical simulationsDNSd sD→ the Kolmogorov scalehd for
finely resolved LES. The approach was also used in sim
tions by Bou-Zeidet al.36 for wall-bounded flows in the lim
where D tends to the local integral scale near the wall
both studies, the semi-dynamic scale-dependent mode
shown to give better results than the scale-invariant mo

The other option is to implement a fully dynamic form
lation where the scale-dependence parameterb is measure
through an additional filtering operation. The latter appro
has been successfully implemented with the planar-ave
dynamic approach for atmospheric boundary-layersABLd
flows by Porté-Agelet al.22 The main assumption used
this model is that a power-law behavior describes the
dependence of the coefficient, i.e.,cs,D,Df or, in a dimen
sionally more appropriate form,cs,D=cs,aDsD /aDdf. As a

consequence,b evaluated as the ratio of coefficients at scales
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aD and D is equal tob evaluated between scalesa2D and
aD si.e., the power-law assumption is equivalent to the
sumption that the scale-dependence parameterb=a2f is it-
self scale-invariant—see discussion in Porté-Agelet al.22d. A
second Germano identity, written between scalesD anda2D
yields

cs,D
2 =

kQijNijl
kNijNijl

, s8d

where Qij sthe resolved stress tensor betweenD and a2Dd
andNij are given by

Qij = ũiũĵ − ũi
ˆ ũj

ˆ , Nij = 2D2fuS̃uS̃ij

w
ˆ

− a4b2uS̃ˆ uS̃ˆ ijg. s9d

By equating the right-hand sides of Eqs.s7d and s8d,
Porté-Agelet al.22 obtained a fifth-order polynomial inb,
including ten termsstensor contractions involving vario
filtered strain-rates and resolved stress tensorsd that need to
be averaged over directions of statistical homogeneity.22 The
polynomial is solved forb and the solution is then replac
in Eq. s7d to obtain a scale-dependent estimate ofcs,D. This
implementation of the scale-dependent model, used in P
Agel et al.,22 worked well with the planar averaging a
proach.

C. The Lagrangian-averaged scale-invariant SGS
model

The requirement for homogeneous directions in the
field limits the use of the dynamic model to relatively sim
flows, excluding many practical flows in complex geo
etries. Local formulations of the model have b
developed.25,37As outlined in Sec. I, the need to evaluate
divergence of the SGS stress makes the highly interm
coefficient fields, which often need to be clipped at z
resulting from purely local dynamic determinations unde
able. Moreover, conceptually some averaging is neede
recover the statistical basis of the eddy-viscosity model21,24

An alternative approach, combining features from the l
and averaged formulations, was developed by Meneveet
al.24 The model averages the Smagorinsky coefficient in
following fluid pathlines and hence it is called t
Lagrangian-averaged scale-invariant modelsLASId. The La-
grangian averaging enforces to some degree the stat
basis that supports the use of an eddy-diffusion model a
physically justifiable since turbulent eddies with sizes a
the grid scale are likely to be convected along fluid pathli
Meneveau and Lund38 also showed that the turbulent ene
cascade is most apparent when viewed in a Lagrangian
of reference. The model is very well suited for the appl
tions with heterogeneous spatial conditions since it pres
local variability, preserves Galilean invariance, and does
require homogeneous directions. It has already been ap
in LES of flows in complex domains such as flows in inte
combustion engines,27 flow over wavy walls,28 flows in

29 30
thrust reversers, and flow of impinging jets.
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In the Lagrangian SGS model, the coefficientcs,D is ob-
tained by minimizing the weighted time average of the l
error contractioneijeij over pathlines; this weighted time a
erage can be written as

E =E
−`

t

eijfzst8d,t8geijfzst8d,t8gWst − t8ddt8, s10d

wherezst8d are the previous positions of the fluid eleme
and Wstd is a relaxation function that typically alloca
larger weights to the more recent history of the coeffici
si.e.,Wstd is a decreasing function oftd. By filtering between
D andaD and using a scale invariant form of the Germ
identity, the coefficient is obtained by setting the variatio
E with respect tocs,D

2 to zero:

]E

]cs,D
2 =E

−`

t

2eij
]eij

]cs,D
2 Wst − t8ddt8 = 0, s11d

which results in the following expression forcs,D
2 :

cs,D
2 =

JLM

JMM
, s12d

where

JLM =E
−`

t

LijMijfzst8d,t8gWst − t8ddt8 s13d

and

JMM =E
−`

t

MijMijfzst8d,t8gWst − t8ddt8. s14d

For the weighting function, a choice of an exponen
form, Wst− t8d=s1/Tde−st−t8d/T, allows replacing cumbersom
evaluations of backward time integrals with forw
relaxation-transport equations. Based on DNS results an
mensional self-consistency,24 the time scaleT is chosen a
T=1.5DsJLM JMMd−1/8. This choice of the time scale offe
the practical advantage of allocating less weight to re
history si.e., increasing the model’s memoryd if the curren
values ofLijMij are negative. The time scale is effectiv
infinite if JLM reaches zero, thus preventing negative va
of cs,D. The relaxation transport equations thus obtained
JLM andJMM are

DJLM

Dt
=

]JLM

]t
+ ũ · ¹ JLM =

1

TD

sLijMij − JLMd s15d

and

DJMM

Dt
=

]JMM

]t
+ ũ · ¹ JMM =

1

TD

sMijMij − JMMd.

s16d

Using first-order numerical approximations in space
time, these equations can be discretized and included
economically in an LES code. The resultant formulatio
update from time-step “n” to “ n+1” at a grid point located a

x is
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JMM
n+1sxd = «fMijMijgn+1sxd + s1 − «dJMM

n sx − ũnDtd,

JLM
n+1sxd = Hh«fLijMijgn+1sxd + s1 − «dJLM

n sx − ũnDtdj,

where

« =
Dt/Tn

1 + Dt/Tn, Tn = 1.5DsJLM
n JMM

n d−1/8 s17d

and

Hhxj = ramp function =U x if x ù 0

10−32 otherwise
u .

HereDt is the time step. Bilinear spatial interpolation is u
to evaluate the previous values at positionx− ũnDt, i.e., “up-
stream” of the grid point in question. The ramp function
needed to ensure that numerical inaccuraciessmainly due to
the discretization of the equationsd do not yield slightly nega
tive cs,D values despite the choice of the time scale to a
such occurrences, and to avoid infinities when evaluatinTn.
For wall-bounded flow simulationsssuch as LES present
later in this studyd, periodic boundary conditions forJLM and
JMM are used in the horizontal directions. At the lower
upper boundaries, zero-gradientshomogeneous Neumand
boundary conditions are imposed, i.e., the values a
boundary are set equal to the values at the closest node
the domain.

III. SCALE-DEPENDENT LAGRANGIAN DYNAMIC
MODEL

Implementation of the Lagrangian averaging appro
described in Sec. II C with the scale-dependent method
scribed in Sec. II B would require accumulating ten differ
Lagrangian averagesssee Sec. II B and Porté-Agelet al.22d,
as well as solving a fifth-order polynomial forb at every grid
point in the domain. This is a prohibitively expensive pro
dure, and the choice of the proper polynomial root, if it
ists, is difficult due to the more noisy characteristics of
grangian averaging compared to planar averaging. Hen
simplified procedure that is better suited for Lagrangian
eraging is sought here

The procedure is based on the observation that the
namic model, in its scale-invariant formulationfi.e., using
b=1 when evaluatingMij sEq. s6dg, yields a coefficient tha
corresponds to the test-filter scaleaD rather the grid-filte
scaleD. That is to say, in practice one approximately obt
a value suitable forcs,aD instead ofcs,D when evaluating th
right-hand side of Eqs.s7d or s12d with Mij usingb=1. This
effect has been observed to be true in numerical experim
of scale dependence both when the coefficient increases
increasing scale, such as whenD approaches the Kolmo
orov scale,35 and when the coefficient decreases with
creasing scale, e.g., whenD is close to the integral scale22

This effect can be traced to the fact that, in the Germ
identity fEq. s3dg, the tensor terms relating to the test-fi
scaleaD are significantly greater than the terms relating

the grid-filter scaleD sabout 4 times greater ifa=2d. Hence
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these terms relating to the test-filter scale dominate the
term fEq. s5dg. Using this observation and usinga=2, we
may write

cs,2D
2 =

JLM

JMM
. s18d

Similarly, for a=4, we write

cs,4D
2 =

JQN

JNN
, s19d

where

JQN =E
−`

t

QijNijfzst8d,t8gWst − t8ddt8 s20d

and

JNN =E
−`

t

NijNijfzst8d,t8gWst − t8ddt8. s21d

HereQij andNij are computed using their definitions giv
in Eq. s9d and a value ofb=1; however, the weighting fun
tion now involves exponential decay with a time consta

T4D
n = 1.5DsJQN

n JNN
n d−1/8. s22d

In the Lagrangian scale-dependent model the averageIQN

andINN are evaluated from two additional relaxation tra
port equations:

]JQN

]t
+ ũ · ¹ JQN =

1

T4D

sQijNij − JQNd s23d

and

]JNN

]t
+ ũ · ¹ JNN =

1

T4D

sNijNij − JNNd. s24d

When they are discretized according to the same proce
and approximations described in the preceding section,
read

JNN
n+1sxd = «4DfNijNijgn+1sxd + s1 − «4DdJNN

n sx − ũnDtd,

JQN
n+1sxd = Hh«4DfQijNijgn+1sxd + s1 − «4Dd

3JQN
n sx − ũnDtdj,

where

«4D =
Dt/T4D

n

1 + Dt/T4D
n , T4D

n = 1.5DsJQN
n JNN

n d−1/8 s25d

and

Hhxj = ramp function =U x if x ù 0

10−32 otherwise
u .

Boundary conditions are similar to those used forJLM

andJMM speriodic in the horizontal directions and zero g
dient at the lower and upper boundariesd. In the source term
both Mij and Nij are evaluated assuming thatb=1 swhich

can be considered as a “first guess” in an iterative, explicit
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procedure to take scale-dependence into accountd. From the
locally known approximate values ofcs,2D andcs,4D, the loca
value ofb can be evaluated according to

b = cs,4D
2 /cs,2D

2 . s26d

Next, as in Porté-Agelet al.,22 we use the assumptio
thatb is scale invariant, i.e.,b=cs,4D

2 /cs,2D
2 =cs,2D

2 /cs,D
2 swhich

amounts to postulating power-law dependence of the co
cient as a function of scale, with arbitrary exponentd. We
may then solve for the unknown coefficient at scaleD,

cs,D
2 = cs,2D

2 /b, s27d

whereb is given by Eq.s26d.
In principle,b obtained from Eq.s26d can vary betwee

0 and infinity, depending on the local values obtained
cs,4D and cs,2D. In practice, of course, some of these lim
may cause numerical difficulties. We have observed th
the limit of b→` si.e., whencs,2D tends to zero whilecs,4D

does notd, the local coefficient used in LES goes to
ssmoothlyd and this limit does not pose any difficulties
LES. However, whencs,4D tends to zero whilecs,2D does not
b→0, leading to very large values ofcs,D from Eq. s27d. In
simulations, this may lead to numerical instabilities ass
ated with viscous stability conditions being locally violat
Therefore, some clipping ofb away from zero is required
allow simulations to proceed. We choose a lower limit ob
ù0.125. The clipping limit is significantly below physica
expected limiting behaviors. As the ground is approac
the mixing lengthg=Dcs,D is expected to become prop
tional to the integral scalez. Therefore, close to the grou
Dcs,D,z or cs,D,z/D. Therefore, as the wall is approach
the average value ofb tends to

b = cs,2D
2 /cs,D

2 ,
z2/s2Dd2

z2/D2 = 1/4. s28d

Away from the wall,b is expected to increase to a me
value of about 1. Hence, the clipping limit of 0.125 allo
the coefficient to decrease locally to half its average m
mum value. Note that this clipping limit already correspo
to very severe scale dependence, namely, the eddy-vis
coefficient at scaleD being eight times larger than at sc
2D.

No limit is imposed for highb, thus the allowable rang
is 0.125øbø`. Tests with other clipping limits were co
ductedsb was clipped at 0.1 and 0.167d without significan
impact on the results. This was expected since it is obse
in simulations that the clipping at 0.125 is only needed a
15% of the time: the clipping limit cannot significantly affe
the results or be used as a tuning parameter to adjus
results. Therefore, the model coefficient to be used in
simulation is obtained at every grid point and time step f
the Lagrangian averaged quantities according to

cs,D
2 =

cs,2D
2

maxsb,0.125d
=

JLM/JMM

maxSJQNJMM

JNNJLM
,0.125D . s29d

In summary, the Lagrangian-averaged scale-depe

dynamic modelsLASDd involves test-filtering and second
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test-filtering operations to evaluate the local source t
LijMij , MijMij , QijNij , andNijNij , updating the four Lagran
ian averagesJLM, JMM, JQN, andJNN following Eqs. s17d
ands25d, and evaluating the local coefficient value to be u
in LES according to Eq.s29d.

The same scale-dependent approach can obvious
used with planar averaging where the planar averaged
ficient at the grid-filter scale can be obtained using

cs,D
2 =

kLijMijl/kMijMijl

S kQijNijlkMijMijl
kNijNijlkLijMijl

D . s30d

The brackets denote planar averaging. This planar-ave
scale-dependent model will be referred to as PASD. No
ping is needed with the planar averaged approach sinc
heavy averaging associated with the planar formula
eliminates the fluctuations that led to the need for clipp

IV. NUMERICAL CODE AND TESTS IN
HOMOGENEOUS, HIGH-REYNOLDS NUMBER,
BOUNDARY LAYER FLOWS

A. Numerical code

The isothermal LES equations are solved in rotati
form to ensure conservation of mass and kinetic energ
the inertial terms:39

]ũi

]xi
= 0,

s31d
]ũi

]t
+ ũjS ]ũi

]xj
−

]ũj

]xi
D = −

1

r

]p̃*

]xi
+

]

]xj
s2scs,DDd2uS̃uS̃ijd + F̃i .

HereFi is the mean streamwise pressure forcing. Note th
the above equations, the molecular viscous term is negl
because the paper focuses on very high-Reynolds nu
flows where viscosity is negligible at the resolved scales
the wall layer is modeledsas opposed to resolving the v
cous sublayer, see Pope26d. The modified pressure term

p̃ * = p̃ + s1/3drskk + s1/2drũjũj s32d

is computed as usual from a Poisson equationsdivergence o
momentum equation set to zero due to continuity conditd.

The code uses a pseudospectral approach in the ho
tal directions. A second-order accurate centered-differe
scheme, requiring a staggered grid, is used in the ve
direction. This entails storing the variables at heightsjdz or
s j +1/2ddz; wherej goes from 0 toN sthe number of vertica
grid pointsd. The fully explicit second-order accurate Ada
Bashforth scheme is used for time advancement. Alia
errors can be detrimental to the accuracy of the SGS pa
etrization since they affect the smallest resolved scales
to compute the dynamic Smagorinsky coefficient. To o
come this problem, the 3/2 rule40 is used to fully dealias th
convective terms. More details about some numerical as
of the codesunrelated to the SGS modeld can be found in

Refs. 7 and 8.
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The boundary conditions in the horizontal directions
periodic. A stress free condition is imposed at the top o
domain by setting

]3ũ1,2= ũ3 = 0, s33d

where 1, 2, and 3sor x, y, z in other parts of the paperdrefer
to the streamwise, cross-stream, and vertical directions
spectively. At the bottom of the domain, the vertical velo
is set to 0 at the surface. As a consequence of the stag
grid formulation, no boundary conditions are needed for
horizontal velocities since they are only stored at a dist
dz/2 above the surface. Stresses at the surface are im
through a local similarity theory formulation41 ssee Piomell
and Balaras42 for a review of wall modeling in LESd. How-
ever, velocities filtered at twice the grid scale are use
compute the surface stress; this is needed to ensure th
average stress over the wall is close to the stress predict
the classic log law. The need for this formulation and
derivation are explained in the Appendix. The resulting l
of-the-wall formulation is

twsx,yd = − F k

lnfsdz/2d/zogG2

sfuD1sx,y,dz/2dg2

+ fuD2sx,y,dz/2dg2d. s34d

Subsequently, the stress is partitioned into its streamwis
cross-stream components in the usual manner:

ti,3
wallsx,yd = twsx,ydFuD isx,y,dz/2d

ÎuD1
2 + uD2

2 G, i = 1,2. s35d

A sharp spectral cutoff filter is used in the wall stress
SGS computations. The fully scale dependent dyn
model increases the computational cost by about 20%
pared to the Smagorinsky–Lilly model with imposed coe
cient. Half of this increase is related to the dynamic com
tations of the coefficient while the other half is related to

TABLE I. Simulation parameters for homogeneous surface simulation

Domain height

Domain lengthL and widthW

Mesh spacings

Wall roughnessz0 imposed in lower boundary condition

Number of grid points

Initial conditions

Warm-up period

Forcing

Simulation time step,dt

Lagrangian model time step

Number of simulation time steps

Output sampling frequency

aReference 43.
Lagrangian averaging operations. These computational re
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quirements are assessed when the coefficientcs,D is updated
every fifth time step; this update frequency of the coeffic
requires a time step for Lagrangian modelDt fEq. s17d and
s25dg equal to five times the time step of the LES codedt.
Tests for this study confirm that results obtained when up
ing the coefficient every single time step and every fifth t
step are similar.

B. Tests in homogeneous boundary layer flow

Simulations over a homogeneous rough surfaceswith
constant roughnesszo imposed through the stress bound
condition at the lower surfacedwere performed using: th
simple Smagorinsky or Smagorinsky–Lilly model with
wall damping functionsSMAGd, the PASI, the LASI, th
PASD, and the LASD models. Table I details the param
of the simulations.

The cs,D coefficients computed by the different mod
sor imposed for the SMAG modeldfor the homogeneou
surface simulations are compared in Fig. 1. Close to the
face, all the dynamic formulations predict a lower value
cs,D than the one assumed by the Mason–Thompson dam
function, whereas in the core of the flow they tend tow
the classic value between 0.1 and 0.22. Regardless o
averaging method, the scale-dependent formulation y
larger coefficients than the scale-invariant formulation,
sistent with the fact that near the surface the coefficien
creases with decreasing scale. In addition, the planar
aged formulations predict lowercs,D than the equivalen
Lagrangian formulation away from the wall and a highercs,D

close to the wall. We have verified that the larger Lagran
averaged mean coefficients occur due to infrequent large
ues ofcs,D obtained locally that dominate the mean va
plotted but do not necessarily increase the mean SGS fl
mean dissipation to the same degree. Specifically, result

H

L=W=2pH

dx=dy=2p dz

z0/H=10−4

N3=643

Mean velocity: logarithmic profile near the surface merging
smoothly with a zero-gradient profile at the top. Velocity
fluctuations: imposed randomlysin space and among componend
on the mean profile using a prescribed turbulent kinetic energ
profile sfrom results by Andrenet al.ad.
Warm-up simulations are run until the normalized total stres

profile adjusts to a straight line reaching 1 at the surface and
mean resolved kinetic energy is stable.

Imposed pressure gradient:s1/rd=p=u*
2/H.

dtu* /H=0.000 25snondimensional time unitsd.
Dt=5dt

200 000

Every ten time steps
s.
-sented later will show that the average dissipation character-
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istics for the different models are not influenced significa
by the averaging method but are much more sensitive t
scale-dependence of the model.

Next, we present mean velocity profiles resulting fr
the simulations. For the homogeneous surface simula
the velocity profile is expected to be logarithmic close to
surfacesin the bottom 10%–20% of the simulation domad,
following kũl=su* / kdlnsz/zod. Figure 2 depicts the mea
velocity fFig. 2sadgand the nondimensional velocity gradi
skz/u* d]kũl /]z fFig. 2sbdgobtained using the different SG
models. The solid black line in Fig. 2sadis the log law pre
diction with zo/H=10−4. The Smagorinsky model results in
high gradient near the wall. This is in agreement with
previous findings22,32 suggesting that the model overdis
pates resolved kinetic energy close to solid boundaries
thus the total Reynolds stresses are too low there leadi
excessive mean velocity towards the core. Inversely, the
scale-invariant formulationssPASI and LASIdproduce insuf
ficient dissipation leading to low velocity gradients and
streamwise velocity near the wall. On the other hand,
scale-dependent formulations yield a value
skz/u* d]kũl /]z close to 1 near the surface suggesting
they are dissipating energy at a more appropriate rate
hence reproducing the log-law region more successfully
the other models. Note also that the present plane ave
scale-dependent results are slightly inferior to those
sented previously.22 The discrepancy could be due to the f
that, in Ref. 22, a fifth-order polynomial was solved forb,
instead of the more approximate method employed
based on Eq.s30d.

Reproducing the log-law region depends on the abilit
the SGS model to provide the correct dissipation rate clo
the wall. However, a more complete insight into the ene
dissipation characteristics of the SGS closure can be
tained by examining the streamwise velocity spectra. In
inertial subrangesk1z.1, wherek1 is the wavenumber and
is the distance to the walld, the effects of viscosity, bounda
conditions, and large scale structures are not importan
the turbulence is essentially isotropic. The energy casca

FIG. 1. Vertical profiles of the Smagorinsky coefficientkcs,Dlx,y,t for the
different SGS eddy-viscosity models.
this subrange follows the Kolmogorov spectrum yielding a
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slope of −5/3. In the production rangesk1z,1d, the energ
cascade is affected by the flow configuration. In w
bounded flows with neutral stability, there is evidence
the longitudinalsin the streamwise directiond energy spec
trum of streamwise velocity in the production range follo
a slope of −1.44–46We remark that there exists evidencessee
e.g., Refs. 47–49dthat thek−1 regime does not extend ov
significant ranges of wavenumbers, and thus the matter
conclusively settled from the data. Nevertheless, at the
tively short range of scales afforded by the resolution lev
our simulations, the expectation of an approximatek−1 region
still provides a useful criterion to test the various mod
Figure 3 depicts the longitudinalu spectra produced by t
different SGS models. The conclusions are similar to w
was discussed for the log-law prediction. With the Sma
insky model, too much energy is dissipated and the sp
decay much too fast at high wavenumbers. The Lagran
scale-invariant formulationsLASId gives spectra that are t
flat at small distances from the surface, indicating ins
cient energy dissipation and a buildup of energy at the s
est resolved scales. The spectra of the PASI model ar
shown here but depict underdissipation problems nea

FIG. 2. sad Normalized streamwise mean velocity profiles; the solid b
line is the log law profile withzo/H=10−4, sbd nondimensional mean velo
ity gradients for different SGS models.
wall very similar to the LASI model results. The spectra for
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the SMAG, LASI, and PASI models are most obviously
error close to the wall, where the assumption of isotr
homogeneous turbulence and the assumption of scale i
ance clearly do not hold. The spectra obtained with
LASD and PASD models follow the −1 and −5/3 slo
well in the two ranges. This confirms that a dynamic sc
dependent formulation is important for non wall-resolv
LES in the vicinity of walls. Notice also that the LAS
model is slightly less dissipative than the PASD model.
same is true when comparing the scale-invariant versio
the planar-averaged and Lagrangian-averaged modelsthis
holds for the results in this study and in Ref. 24d.

C. Lagrangian scale dependent model detailed results

In the preceding section, basic results of the LA
model were presented and compared with other SGS mo
More comprehensive results obtained with the LASD m
are presented in this section along with an analysis o
results sensitivity to the resolution of the simulation. T
LES simulations over a homogeneous surface were ru
resolutions of 323, 643, 963, and 1283.

Figures 4sadand 4sbddepict the resolved, subgrid-sca
and total stress profiles for the 643 and 1283 resolutions. As
expected, close to the surface most of the stress is in the
part while away from the wall most of the stress is resol
The results are in qualitative agreement with many LES s

ies ssee Ref. 22 or the comparative study in Ref. 43, for
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exampled. Quantitative comparison is difficult since the
titioning of the stress into resolved and SGS compon
depends on the resolution and the SGS model used
effect of resolution can be easily observed in Fig. 4 w
the 1283 resolution results in higher resolved stressessand
lower SGS stressesdcompared to the 643 simulation. The
total stresses remain the same but the higher resolution
lation can resolve a larger part of these stresses.

The variances of the resolved velocities for the diffe
resolutions are plotted in Fig. 5 versusz/D. The results of th
different resolutions match reasonably well. The profiles
lapse at smallz/D whereas further up an increase in res
tion leads to an increase in the resolved variances. The
ances of the current LES results fall well within the ra
reported by Andrenet al.43 in their comparative study of fou
LES codes. In addition, the results coincide well with
variances reported by Porté-Agelet al.22 in their LES of
ABL flow with a planar scale-dependent dynamic model
uses a different approach to “measure” scale dependencssee
Sec. II Bd.

We confirm that the mean coefficient determined f
LASD is, to a good approximation in this case of neutr
buoyant homogeneous boundary layer flow, a universal
tion of heightz when normalized with the filter scaleD. The
vertical profiles ofkcs,Dl computed at different resolutio

FIG. 3. Normalized streamwise sp
tra of streamwise velocity vsk1z sthe
lines represent the spectra obtaine
heights z/H=0.008, 0.024, 0.04
0.056, 0.087, 0.119, 0.151, 0.18
0.214, 0.246, 0.31, 0.373, 0.437, a
0.5d.
are plotted versusz/D in Fig. 6. It is clear that, except for
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small deviations for the 323 simulationsdue to the effect o
the top boundary condition in that cased, the results collaps
well near the wall.

Next, the variability of the coefficient computed fro
LASD is documented. Figure 7 depicts the probability d

FIG. 4. Vertical profiles of the resolved stress −kũ8w̃8lt,y,x s…d, the subgrid
scale stress −ktxzlt,y,x s1d, and the total stressssolid line,—d: sad 643 resolu-
tion, sbd 1283 resolution.
Downloaded 24 Jan 2005 to 128.220.2.42. Redistribution subject to AIP l
sity functionsspdfsd of the dynamic coefficient at three d
ferent heights; for each height, the pdfs obtained from
four different resolutions are shown. The distribution has
standard deviation and mean atz=dz/2, the mean as well a
the spread of the data increases further up. Consisten
the pdfs of Lagrangian coefficients determined using
scale-invariant dynamic model in wall-resolving LES,24 the
peaks of the pdfs are close to the mean values and the
do not exhibit secondary peaks or unusual features. Also
the spike in the pdf at zero associated with the use of a
scale that becomes infinite ascs tends to 0; this is in agre
ment with the scale-invariant version of the model.24

For the 323 resolution, considerable difference can
noted between the pdfs atz=H /8 andz=H /4. For the highe
resolution runs, this difference decreases; this is a direct
sequence of the decrease in the ratio of the grid scaleD to the
integral length scale,z, at a given height, as the resolut
is increased. Therefore, as the resolution increases, we
decrease in the height at which the turbulence near the
scale approaches isotropy.

Figure 8 depicts the probability density function of
scale-dependence parameterb and the threshold of 1/

FIG. 5. Normalized variances of r
solved velocity components obtain
with the LASD model at differen
resolutions.

FIG. 6. Collapse of the vertical profiles of the mean dynamic coeffi
obtained from LASD model for different resolutions when plotted ag
z/D.
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above which it is clipped. Peaks of the pdfs are well ab
the clipping limit except atz=dz/2 where the peak is clo
to the clipping limit; however, even atdz/2, most of theb
values occur above the clipping limit. A small increase in
pdf can be noticed at the value of zero, caused by the u
a Lagrangian model time scale to avoid negative value
cs,4D, which yields a slightly increased probability ofcs,4D

=0 fi.e., b=0 according to Eq.s26dg.

V. SIMULATIONS OF BOUNDARY LAYER FLOW OVER
A HETEROGENEOUS ROUGH SURFACE

The previous results focused on flow over homogen
rough surfaces and showed that the scale-dependen
proach yields better results than thead hoc Smagorinsky
model or the scale-invariant formulations near the surf
Nevertheless, the motivation for using a Lagrangian l
model rather than a plane averaged model becomes ap
only when examining more complex, nonhomogene
flows si.e., when homogeneous directions are not avail
for averagingd.

In the simulations over heterogeneous walls prese
below, while averaging over horizontal planes is possible
streamwise direction is not homogeneous and hence the
ability of the coefficient in that direction would be su
pressed by planar averaging. In such flows, an impo
question is whether spatial variations in the coefficient

great enough to justify the extra cost of the Lagrangian

Downloaded 24 Jan 2005 to 128.220.2.42. Redistribution subject to AIP l
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modelsabout 10% more than the equivalent planar aver
versiond. Moreover, one should consider whether the v
tions actually affect relevant parameters such as fluid ve
ties and stresses. These two questions will be address
this section where simulations over heterogeneous wal
performed using the LASD and the PASD models and c
pared to experimental data. The other modelssSMAG, LASI,
and PASId, having already performed poorly in simulati
over homogeneous surfaces, will not be tested.

A. Bradley’s experimental setup

The atmospheric boundary layer measurements
Bradley50 have often been used to validate theoretical
numerical models for flow over an abrupt change in sur
roughness.51–54 Bradley measured the surface stressswith
drag platesdand the velocity profiles upstream and do
stream of a sudden jump in surface roughness. The mea
ments were performed over a tarmacssurface roughnesszo

=0.002 cmd. A patch with a higher roughnessszo=0.25 cmd
was created inside the tarmac by laying artificial rough
mats consisting of vertical spikes with reinforcing mesh
between.

For the low-to-high roughness transition measurem
the high-roughness patch was created at the downs
end of the tarmac and measured 26 m320 m in the stream
wise and cross-stream directions, respectively. The ta

FIG. 7. Probability density function
for the dynamic coefficientcs,D com-
puted using LASD, at different heigh
and different resolutions:sad 323, sbd
643, scd 963, and sdd1283.
had an effective area upstream of the measurement of
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134 m392 m in the streamwise and cross-stream direct
respectively. For the high-to-low roughness measurem
the high-roughness patch was slightly shorter, meas
22 m in the streamwise direction, and the patch was pl
near the upstream end of the tarmac.

In the LES, in the cross-stream direction, a dom
width of 64 meters is simulated with a resolutiondy=1 m.
Furthermore, the high-roughness patch is assumed to e
over the entire cross-stream direction of the simulationsi.e.,
infinitely wide patchd. For the results examined in this wo
the cross-stream dimensions of the tarmac and the
roughness patch have very little impact on the results;
was confirmed in LES tests not presented in this work
included rectangular patches of various widths. The com
tational domain height isH=20 meters, i.e., only the nea
surface layer of the ABL is simulated to allow for a h
vertical resolution sdz=10 cmd that can capture intern
boundary layers originating at the transition between pat
of different roughness. Figure 9 depicts the computati
domain used to simulate conditions similar to Bradley’s fi
experiments. Two simulations were performed to reprod
Bradley’s low-to-high and high-to-low roughness transitio

Note that, due to the pseudospectral approach used
code, what is actually being modeled is an infinite sequ
of high-roughness and low-roughnessstarmacdpatches. Thi
does not affect the comparison results since we look at s

and velocity at the roughness jump, very close to the wal
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where the upstream conditions should not be very impor
In practice, since the upstream conditions outside of the
mac are unknown for the Bradley experiment, no bette
ternative to define inflow conditions exist.

FIG. 8. Probability density function
of the scale-dependence parameteb
obtained dynamically from the LAS
approach, at different heights and d
ferent resolutions:sad 323, sbd 643, scd
963, andsdd 1283.

FIG. 9. LES parameters and simulation domain for reproducing Brad
field experimental study of atmospheric surface layer flow over a

lroughness transitions.
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B. Mean surface shear stresses

Bradley plotted the mean surface shear stress mea
downstream of the jump in roughness divided by the sur
stress directly upstream of the jump. This ratio eventu
relaxes downstream of the jump to the equilibrium va
corresponding to the downstream surface. The ratio m
depends on the two surface roughness values. The LE
to correctly predict this equilibrium ratio as well as the
laxation rate or the distance downstream of the jump w
the ratio reaches its equilibrium value. Since LES codes
wall modeling “measure” the surface stress from the law
the-wall using the velocity at the first grid point from t
wall, they cannot accurately predict the departure from e
librium of the stress ratio immediately after the roughn
jump. This is due to the fact that the first grid points aw
from the wall do not lie in the internal equilibrium lay
sIELd of the downstream patch and hence are affected b
upstream patch. Since the first grid point is 5 cmsdz/2d
above the wall, one expects that the values of the stress
will be affected by this source of error up to 5 m downstre
of the jump in roughnesssabout 5 cm3100, see Brutsaert55

for scaling approximations for the IELd. Figures 10 and 1
depict the stress ratios measured by Bradley and simu
by the LES for low-to-high and high-to-low roughness tr
sitions, respectively. The LASD model results agree
with the experimental results, especially past the downst
distance of 5 m after which the flow is in equilibrium w
the underlying surface and the LES can accurately me
surface stress. The agreement between PASD model r
and experimental data is slightly less satisfactory.

FIG. 10. Wall shear stress downstream of a low-to-high roughness
normalized by the equilibrium stress of the upstream surface: compari
LES results and Bradley’s field data.

FIG. 11. Wall shear stress downstream of a high-to-low roughness
normalized by the equilibrium stress of the upstream surface: compari

LES results to Bradley’s field data.
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C. Mean velocity profiles

The streamwise velocity profiles produced by the L
are compared to the profiles measured by Bradley at va
downstream distances. Following Bradley’s approach,
velocities are normalized by the value at some height ou
the internal boundary layer of the downstream patchs220 cm
for the low-to-high roughness transition and 112.5 cm fo
high-to-low roughness transitiond. This is necessary sin
Bradley’s data at different downstream distances are
tained at different times and hence cannot be normalize
u* su* will not be constant at the various times the data
acquiredd. Figure 12 depicts the comparison results. Fo
low-to-high roughness transition, the two SGS models
the experimental data agree very well. For the high-to
roughness transition, the two SGS models produce diff
results and the LASD data agrees better with the experi
tal data. This has been traced to a greater difference in
dissipation between the two models over the low-rough
surfacescompared to the difference over the high-rough
surfacedas will be shown in the following section.

D. Coefficient variability over different patches and
its effects

In Fig. 13sad, the value of the Smagorinsky coeffic
averaged in the cross-stream direction and in time,kcs,Dly,t, is
plotted for the simulation with the LASD model reproduc
Bradley’s data for the high-to-low roughness transition.
coefficient is divided by its average over horizontal pla
kcs,Dlx,y,t, to remove the effect of vertical variations and fo
on horizontal variability. Up to 150%sminimum is,0.5 of
mean and maximum,1.3 of meandvariations between th
high-roughness and low-roughness patches can be obs
near the ground, and the effect of surface heterogeneit
tends well into the lowest 10% of the domain. This sens
ity of cs,D to surface heterogeneity will not be captured
the planar-averaged model resulting in a difference in
SGS dissipation produced by the two models. This differ
in estimating the SGS dissipation impacts the stress an
locity results produced by the models as depicted in Fig
and 12. The dissipation of the LASD model divided by
dissipation of the PASD model is depicted in Fig. 13sbd. It is
clear that the difference is more significant and exte
higher above the low roughness surfacescompared to th
difference above the high-roughness surfaced.

E. Sensitivity to grid resolution

Similar to the simulations over homogeneous surfa
different grid resolutions were tested for the heterogen
surfaces simulations reproducing Bradley’s experiment.
results presented above pertain to the highest resolution
s1603643200 nodesd. Two other resolutions were teste
low resolution of 803323100 nodes and a medium reso
tion of 1203483150 nodes. The results showed a con
tent improvement in the reproduction of Bradley’s exp
mental data as the grid resolution was increased; this ap
for both the PASD and LASD subgrid scale models. In

,
f

f

section, we only present the results obtained with the LASD
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model. Figures 14 and 15 depict the wall shear stress d
stream of a low-to-high and high-to-low roughness jum
respectively. One observes that as the resolution decr
and the first grid point moves further away from the wall,
stress profile becomes flatter.

Figure 16 shows the velocity profile adjustment at ab
four meters downstream of the roughness jump. For the
to-high transition, all resolutions are able to capture the
perimental velocity profile rather well; this is in agreem
with the results of the sensitivity to the SGS model. For
type of transition, the LES seems to be able to capture
velocity profile regardless of the numerical details and
SGS model. On the other hand, for the high-to-low rou
ness transition, the results from the low resolution simula

do not match the experimental data well. The improvemen
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for the medium resolution is significant and little further
provement is obtained by passing to high resolution;
suggests that the results are converging to the experim
data as the resolution is increased. This type of rough
jump shigh-to-lowd is much more sensitive to the numeri
details and the SGS model used.

VI. CONCLUSIONS

A scale-dependent dynamic subgrid scale model
been formulated based on the Lagrangian time-averagin
proach sLASDd. The model extrapolates the Smagorin
coefficient measured dynamically at two test-filter scale
wards the grid-scale where the coefficient is unknown

FIG. 12. Evolution of velocity profile
after an abrupt change in surfa
roughness: comparison of LES res
to Bradley’s field data.
tneeded for LES. Results show that the model performs well
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in reproducing the log-law region in high-Reynolds num
boundary layers that do not resolve the viscous subl
where scale-dependence is important. The model perf
better than other SGS models tested here, including
Smagorinsky–Lilly model with a prescribed wall damp
function, and the scale-invariant dynamic model. Stream
velocity spectra indicate that the LASD model yields m
accurate mean SGS dissipation properties. The mode
duces only a moderate increase in computational cost o
order of 20% scompared to the Smagorinsky model w

FIG. 13. sColord. Sensitivity of SGS model to surface roughness for a
model,sbd SGS dissipation predicted by the LASD modelsPLASDd divided

FIG. 14. Wall shear stress downstream of a low-to-high roughness
normalized by the equilibrium stress of the upstream surface: sensitiv
grid resolution for the LASD SGS model. HR is for high resolutions160
3643200d, MR is for medium resolutions1203483150d, and LR is for

low resolutions803323100d.
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imposed coefficientd, since the dynamic coefficient need
be updated at every time step of the LESshere we updated
at every fifth time step, but this choice depends on Cour
Friedricks–Lévy stability constraints of particular simulat
parametersd.

To test the model in an inhomogeneous flow under
trolled conditions, it has been applied to LES to comp
with the experimental field results of Bradley50 for high-
Reynolds number boundary layer flow over a roughness
continuity. The experimental results consist of stress an

-to-low roughness transition:sad plot of the dynamic coefficient for the LAS
e SGS dissipation predicted by the PASD modelsPPASDd.

,FIG. 15. Wall shear stress downstream of a high-to-low roughness
normalized by the equilibrium stress of the upstream surface: sensitiv
grid resolution for the LASD SGS model. HR is for high resolutions160
3643200d, MR is for medium resolutions1203483150d, and LR is for
high
by th
low resolutions803323100d.
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locity measurements downstream of the roughness jump
LES was successful in predicting wall stress adjustment
function of downstream distance. Similarly, the velocity p
files from LES data coincided well with the experimen
data at several downstream distances included in the a
sis. Results obtained with the Lagrangian model matche
experimental data better than results obtained with
equivalent planar-averaged model. This difference
traced back to the sensitivity of the Smagorinsky coeffic
to the roughness height of the underlying surface. This
sitivity affects the SGS dissipation rate and cannot be
tured by the planar-averaged formulation. This indicates
a local formulation, such as the Lagrangian one, is b
suited for simulations of flows in complex geometries.
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APPENDIX: A LOCAL LAW-OF-THE-WALL
FORMULATION

In this appendix, an improved local law-of-the-wall
introduced. The common approach used in LES of h
Reynolds number boundary layer flow where the visc
sublayer is not resolved2,8,56,57 is to impose the law-of-the
wall in a strictly local sense:

tw = − F k

lnsz/zodG2

sũ1
2 + ũ2

2d. sA1d

Herek is the von-Karman constants<0.4d andz=dz/2. tw is
the kinematic stresst /r sthe squared friction velocityd at the
wall. The use of this relation imposes an average stres
tained from LES:

ktw
LESl = − F k

lnsz/zodG2

skũ1
2l + kũ2

2ld. sA2d

However, the log law was developed and validated t
used in an average sense, i.e.,

ktw
logl = − F k

lnsz/zodG2

kũ1l2, sA3d

where the mean cross-stream componentkũ2l is zero. Sinc
the velocity atz=dz/2 fluctuates,kũ1

2l. kũ1l2 sSchwartz in
equalityd and ktw

LESl. ktw
logl. Therefore, imposing the wa

stress in a local formulation leads to increased ave
stresses for a given near-wall velocity. In LES with p
scribed pressure gradient and mean stress, this would y
slower flow near the surface.

A potential solution is to divide the stress into a m
contribution and a local contribution similar to the appro
used to impose a velocity gradient at the surface. The
contribution should average to zero, yielding a proper
mate of the average stress. This formulation could be us
homogeneous terrain to impose a local stress. How
when complex or heterogeneous areas are to be simu
defining the mean and the variation parts is not always
sible.

Fortunately, it turns out that filtering the velocitysat z
=dz/2 and only to prescribe the wall stressdat a scale 2D

FIG. 17. Variance ofuD1 and ratio ofkuD1l2/ kũ1
2̄l as a function of filter size
already significantly reduces the small-scale fluctuations so
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that the velocity variance becomes quite small. A formula
that does not require averaging can be derived using
filtered local velocity to impose a stress as in Eqs.s34d and
s35d of the main text.

The filtering preserves the large scale variationsslarger
than 2Dd which are important. At the same time, use of
filtered velocities results in an average stress that is
close to the stress predicted by the average similarity fo
lation for homogeneous surfaces. Figure 17 depicts the

ance of the streamwise velocityũ and the ratiokuD1l2/ kũ1
2̄l for

the unfiltered datasdata at a scaleDd and for increasing filte
size sobtained from our LASD simulationsd. A filtering at a

scale of 2D is sufficient to increaseuD2/ ũ1
2̄ to about 0.985

Note that there is no guarantee that this will yield a cor
stress for heterogeneous surfaces. While a universal fo
lation to compute the average local or average stress
heterogeneous surfaces is yet to be found, this formul
can be implemented for heterogeneous surfaces and wi
tainly give better results that the fully local formulation.

Figure 18 presents the nondimensional velocity grad
for the different formulations, from simulations over hom
geneous surfaces. The local formulation gives a very
gradient near the wallsand strong oscillationsd, this is related
to the high stress and low velocity, predicted by this for
lation, at the wall. On the other hand, the filtered formula
gives better results, as does the mean formulation whi
known to be well suited for homogeneous cases.
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